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One of the fundamental problems in the theory of hydrodynamical stability is the deter- 
mination of the Reynolds number for the transition between laminar and turbulent flow. The 
most difficult case is a rigid loss of stability, where the linear theory gives only an upper 
limit below which the laminar regime can be prolonged under ideal conditions. A typical ex- 
ample is flow in a plane channel. For Poiseui!le flow, the critical Reynolds number, con- 
structed from the mean velocity and the half-width of the channel, is RL = 3848 according to 
the linear theory [i], whereas turbulence is observed for Reynolds numbers around 700 [2]. 
For Couette-Poiseuille flow with a velocity profile UL = (3/2)(1 - lql)(l - y2) + qy the 
Reynolds number in the linear theory goes to infinity when lql + 0.26 [3, 4], but in Couette 
flow (q = i) the transition to turbulence takes place for 600 < R < i04 [5, 6]. 

I. Experiments indicate that one of the basic mechanisms of the transition in boundary 
layers is a secondary instability of two-dimensional Tollmien-Schlichting waves against three- 
dimensional perturbations of half the frequency [7-9]. The simplest case is that of a symmet- 
ric triplet, a resonant group of three waves consisting of one plane wave with frequency w 
and longitudinal wave number a and a pair of three-dimensional waves with parameters (w/2, 
~/2, • where $ is the transverse wave number. 

The importance of three-dimensional perturbations for the transition in plane Couette 
and Poiseuille flows was pointed out in [i0]. It was noted that the two-dimensional self- 
oscillation in Couette flow is unstable. A simple model which takes into account the strong 
nonlinear interaction is the representation of the three-dimensional perturbations by a symmet- 
ric triplet. The critical stationary flow regime for Poiseuille flow was calculated in [ii] 
with this approach. The results not only differ strongly from the case of two-dimensional 
self-oscillations, but are in good agreement with experiment. Below we present the results 
of an analogous calculation for Couette-Poiseuille flow. 

In [i] an escalator scheme for analyzing hydrodynamic stability was proposed, based on 
successively taking into account the fundamental interactions of the perturbations. The trip- 
let model is the next step, following the monoharmonic model. In this case the fluctuation 
part of the velocity is represented in the form 

ch = 2 t l e  I h  v~i (g) exp  [i ((zjx + ~jz - -  ~ziC/)] ,; 

where ~j and ~j are the longitudinal and transverse wave numbers; Cj are the phase velocities; 
Jk are amplitude factors dependent on the normalization conditions; and y is the transverse 

3 

coordinate. The parameters of the carrier harmonics obey the resonance relations ~j =0,; 

3 3 J=1 
~j=0,~ ~ oj----0, where the frequencies mj = ajCj. 

J=1 ~=i 

Equations for the amplitudes u, v, w and the average velocity profile are obtained after 
projection onto the base and zero harmonics. For a symmetric triplet, the resonance condition 
leads to the simple form ~i -- ~, $i = 0, ~2 = ~3 = -~/2, $2 = -$3 = $, CI = C2 = C3 = C, 
and w I = 0, u 2 = u3, v 2 = v3, w 2 = -w 3. 

After carrying out the projection we obtain 
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L2u2 + U'v2 + i~2P2 dl  [2ia2u~ul + (u2vi + ulv2)' + i~2w2ul]~ ( 1 .1  ) 

L~v2 + P~ = - -  J1 [i~2 (v2ul + vlu2) + 2 (vlv2)' + i~2w~vl] ,. 

L2w2 + i~2P2 = - -  J1 [ia2weul + (w~vl)'],. ia2u ~ + v~ + i~ew ~ = O~ 

w h e r e  ~ j  = j 2 j ( u j v j  + u j v j )  i s  t h e  c o n t r i b u t i o n  o f  t h e  j - t h  h a r m o n i c  t o  t h e  R e y n o l d s  s t r e s s .  
The  a v e r a g e  v e l o c i t y  U i s  t h e  sum o f  t h e  l a m i n a r  v e l o c i t y  and  an  a d d i t i o n a l  v e l o c i t y :  U = 
UL + Uadd .  F o r  a known Rp,  we c a n  c o n s t r u c t  a R e y n o l d s  number  f r o m  t h e  mean f l o w  v e l o c i t y  
R = Rp<U> and from the velocity of the wall Re = Rplq I. 

The system (i.i), when supplemented by the adherence conditions, forms an eigenvalue 
problem. Of the parameters (~, 8, Rp, C), three are specified arbitrarily (within definite 
limits), and one is sought as the eigenvalue. The system (i.i) has a certain level of degen- 
eracy: first the laminar limit, where all fluctuation amplitudes are zero; second, the 
monoharmonic limit, when only the two-dimensional harmonics have nonzero amplitude; third, 
when the amplitudes of all harmonics are nonzero, but the quantity C is far from the eigen- 
values of the operator defined by the left-hand side of the first three equations of (i.i). 
In this case, Jl is of order j22 and the two-dimensional waves weakly affect the nature of 
the solution. If C is close to an eigenvalue (in the sense discussed above), then the right- 
hand sides of the first two equations of (i.i) play the role of applied forces acting at the 
resonance frequency. The quantity J1 disproportionately increases, which in turn has an im- 
portant "inverse" effect on the characteristics of the solution. This situation occurs when 
the triplet is in resonance. 

System (i.i) was solved numerically by Newton's method with a second-order approxima- 
tion on a nonuniform grid with a sinusoidal compression toward the walls. The number of grid 
points N = i00. A manifold of solutions at a single point corresponds to neutral curves of 
the linear theory for those q for which it exists. For q = 0, the bifurcation point has the 
parameters [i]: 

Rp z 7776, ~ ~ 1 . 0 8 8 , ~  ~ 0.709, C = 0.358 (2.1) 

and the amplitudes in this case are the eigenfunctions of the linear problem with zero in- 
tensity. Because Newton's method requires a good initial approximation, the parameters were 
varied continuously, starting from (2.1). 

At the point (2.1), the amplitudes of all harmonics are symmetric with respect to the 
transverse component of the velocity. However, it is easy to see that for finite intensities 
this type of solution is impossible for a symmetric profile, i.e., the solution for Poiseuille 
flow is asymmetric. An asymmetry of secondary flow with symmetric boundary conditions is 
not an exceptional occurrence in hydrodynamics. It occurs, for example, for flow in a diffuser 
and in the streamlining of a symmetric body (Karman effect). Asymmetry of the perturbations 
in Poiseuille flow has been observed experimentally [7-9], and although the profile of the 
average nonstationary flow is symmetric, sometimes trajectories can be found close to solu- 
tions with various asymmetries. However, it must be remembered that when q = 0 the asymmetric 
solutions can be transformed into each other by changing the sign of y. For a nonzero q, 
there is no such relation between the solutions. Consequently, when q # 0 there exist two 
different branches of the solution. A pair of solutions transforms into each other if we 
simultaneously change the signs of y and q. Hence it is sufficient to calculate both branches 
for q > 0 or one branch for all q. The latter possibility is the most convenient, and the 
one used here. 

The numerical results support the asymmetry with respect to q of the characteristics of the 
critical self-oscillations. In Fig. i we give Rp*(q) and a,Rp,(q) on the leading edges of the neu- 
tral hypersurfaces. It is clear that the solutions exist in the region [ql 4 0.62. Solutions skewed 
toward the wall and moving in the same direction as the perturbation exist for a wider region (Iqi ~ 
0.62). For solutions with the opposite asymmetry, the critical Reynolds number increases 
rapidly and goes to infinity for [q[ = 0.45. For [ql > 0.26, the nonlinear neutral surfaces, 
as though suspendedabove the surface of zero intensity, do not touch it anywhere. 

Figure 2 shows the critical values of the parameters of the harmonics for different 
values of q. Note that ~, and B, depend strongly on the sign of q. It is interesting that 
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when Rp, § =, ~, goes to a finite limit, whereas in the linear case the critical Rp and a are 
related in such a way that ~, § 0 when Rp, ~ ~ and the product ~,Rp, remains finit:e. 

Curves i-3 of Fig. 3 show the dependence on q of the integral characteristics: the mean 

T/ velocity of flow <U>, the perturbation intensity f= -~ <u~v~>d~ <U> , and the mean veloc- 

\ --I 

ity of laminar flow, respectively. It is seen that with increasing lql, deformation of the 
mean velocity profile rapidly decreases. The perturbation intensity also decreases, but much 
more slowly. It can be assumed that asymptotically (when Rp, § ~) the Reynolds stress is 
equal to zero even though the perturbation has a finite amplitude. 

This assumption is to some extent supported by the curves of Fig. 4. The dashed curves 
1 and 2 show the nature of the deformation of the mean velocity profile UD = U - UL for dif- 
ferent values of q: 1 corresponds to q = -0.45, and 2 to q = -0.62. Note the rapid decrease 
of the velocity profile deformation and the localization of the Reynolds stresses near one 
of the walls of the channel. The solid curves 1 and 2 refer to the laminar velocity profiles 
for the same values of q; the crosses show the positions of the critical layers Yc for which 

U(yc) = C. We note the tendency of one of the critical layers to approach the wall on the 
existence boundary of the solution. 

Therefore, the region of existence of the three-dimensional self-oscillations of finite 
amplitude considered here does not include Couette flow. Apparently this is due to the fact 
that the most critical perturbations for Couette flow have a different structure from those 
for Poiseuille flow. 

The authors express deep thanks to V. N. Shtern and M. A. Gol'dshtik for valuable dis- 
cussions and constant attention to the work. 
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CLASS OF SELF-SIMILAR SOLUTIONS FOR A HIGH-TEMPERATURE 

AXISYMMETRIC JET 

A. A. Bobnev UDC 532.526 

The most simple and rigorous results in the investigation of nonisothermal jet flows 
of a compressible gas can be obtained by utilizing the Dorodnitsyn transformation [i]. How- 
ever, this method is suitable only for plane (or nearly plane) gas flows with a linear depen- 
dence of the heat conduction and dynamic viscosity on temperature; the transition here from 
Dorodnitsyn to physical variables is difficult. In the case of an axisymmetric jet issuing 
from a point source for a domain where the temperature on the axis is considerably higher 
than the temperature at infinity, by using the idea of the existence of a separating layer 
[2], a self-similar solution can be constructed for a power-law dependence of the heat conduc- 
tion and viscosity on the temperature, where it is possible to go from the initial two-param- 
eter problem (the Prandtl number, the exponent) to a one-parameter problem. 

i. We write the problem describing the emergence of a nonisothermal jet from a cylin- 
drical orifice in the boundary-layer approximation in the dimensionless form 

I [ 0o] o 
r~ (T)  = p  VTr + w o z  / ( 1 . 1 )  r Or 7r 

i 0 o 
r Or ( rpv)+~Tz  (pw)=O, ,  p T = l ,  

1 o r~,(r)-~r = P r p  v ~ 7 + w ~ f  �9 
r Or 

aw or O for �9 r = O; 
v Or Or ( i .2 )  

T ~ e , w ~ O  for r-~oo, (1.3) 
where r, zR are cylindrical coordinates (r, z are internal coordinates in an asymptotic expan- 
sion in the small parameter R-i), R = /pmIlm/2V/~m is a certain analog of the Reynolds number, 
vR -i, w - r, z are velocity components; Pr = Cpm~m/Xm is the Prandtl number; and c is the 
value of the temperature at infinity. The notation of the remaining quantities is standard. 
The scales Tm, Pm, cpm, Dm, Xm (the scale quantities are marked with the subscript m), as well 
as the total momentum scale Iim are the enthalpy flux I2m defined by the formulas 
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